Molecular Links between Caloric Restriction and Sir2/SIRT1 Activation
نویسنده
چکیده
Ageing is the most significant risk factor for a range of prevalent diseases, including cancer, cardiovascular disease, and diabetes. Accordingly, interventions are needed for delaying or preventing disorders associated with the ageing process, i.e., promotion of healthy ageing. Calorie restriction is the only nongenetic and the most robust approach to slow the process of ageing in evolutionarily divergent species, ranging from yeasts, worms, and flies to mammals. Although it has been known for more than 80 years that calorie restriction increases lifespan, a mechanistic understanding of this phenomenon remains elusive. Yeast silent information regulator 2 (Sir2), the founding member of the sirtuin family of protein deacetylases, and its mammalian homologue Sir2-like protein 1 (SIRT1), have been suggested to promote survival and longevity of organisms. SIRT1 exerts protective effects against a number of age-associated disorders. Caloric restriction increases both Sir2 and SIRT1 activity. This review focuses on the mechanistic insights between caloric restriction and Sir2/SIRT1 activation. A number of molecular links, including nicotinamide adenine dinucleotide, nicotinamide, biotin, and related metabolites, are suggested to be the most important conduits mediating caloric restriction-induced Sir2/SIRT1 activation and lifespan extension.
منابع مشابه
SirT1 Regulates Energy Metabolism and Response to Caloric Restriction in Mice
The yeast sir2 gene and its orthologues in Drosophila and C. elegans have well-established roles in lifespan determination and response to caloric restriction. We have studied mice carrying two null alleles for SirT1, the mammalian orthologue of sir2, and found that these animals inefficiently utilize ingested food. These mice are hypermetabolic, contain inefficient liver mitochondria, and have...
متن کاملSirtuins and their relevance to the kidney.
Sirtuins (silent information regulator 2 [Sir2] proteins) belong to an ancient family of evolutionary conserved nicotinamide adenine dinucleotide (NAD)(+)-dependent enzymes with deacetylase and/or mono-ADP-ribosyltransferase activity. They regulate DNA repair and recombination, chromosomal stability, and gene transcription, and most importantly mediate the health-promoting effects of caloric re...
متن کاملThe Sir2 family of protein deacetylases.
The yeast SIR protein complex has been implicated in transcription silencing and suppression of recombination. The Sir complex represses transcription at telomeres, mating-type loci, and ribosomal DNA. Unlike SIR3 and SIR4, the SIR2 gene is highly conserved in organisms ranging from archaea to humans. Interestingly, Sir2 is active as an NAD+-dependent deacetylase, which is broadly conserved fro...
متن کاملSIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis.
A progressive loss of neurons with age underlies a variety of debilitating neurological disorders, including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), yet few effective treatments are currently available. The SIR2 gene promotes longevity in a variety of organisms and may underlie the health benefits of caloric restriction, a diet that delays aging and neurodegeneration i...
متن کاملDo we age on Sirt1 expression?
Aging leads to a progressive decline in multiple organ systems, including the heart. Heart failure in response to cellular aging and chronic or acute cellular stresses represents one of the major burdens of the western civilization. Over the last 15 years, the interest in the therapeutic use of caloric restriction to prevent aging has emerged. However, it is difficult to determine whether calor...
متن کامل